首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   60篇
  国内免费   8篇
  2023年   5篇
  2022年   1篇
  2021年   3篇
  2020年   20篇
  2019年   32篇
  2018年   22篇
  2017年   14篇
  2016年   9篇
  2015年   4篇
  2014年   14篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
151.
Layered metal hydroxides (LMHs) are regarded as a novel and important class of inorganic functional materials. They have unique layered structure and variable chemical compositions that can be readily tuned. In this review, summarized are the recent advances of synthetic routes to the LMHs with designed morphology, composition, and function for electrocatalysis. Versatile products can be readily derived by hybridization, anion‐exchange, surface modification, self‐assembly, etc. More importantly, LMHs can be artificially exfoliated into unilamellar nanosheets with a molecular‐level thickness of about 1 nm versus 2D lateral size in submicrometer or micrometer scale. Molecular‐scale assembly can be then applied to fabricate superlattice‐like composites and functional nanofilms with high quality. The hydroxides can be transformed into oxides, nitrides, or other compounds via different preparation procedures, which can further extend their application prospects. In this regard, the most promising electrocatalysis‐related applications of LMHs and their derivatives are reviewed, such as oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, alcohol or urea electrooxidation, etc. At last, future challenges are also discussed from the aspect of synthesis and application, as well as encouraging advancements are anticipated.  相似文献   
152.
153.
Sodium ion batteries (NIBs) are one of the versatile technologies for low‐cost rechargeable batteries. O3‐type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5? y Sn y O2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single‐phase transition from O3 ? P3 at the very end of the oxidation process. Na‐ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.  相似文献   
154.
155.
K‐ion batteries (KIBs) are promising for large‐scale energy storage owing to various advantages like the high abundance of potassium resources in the Earth's crust, high operational potentials, and high power due to fast diffusion of K+ ions. However, to realize the practical application of KIBs, electrode materials are needed with high operational voltage, good capacity, long cycle life, and low‐cost. This work reports a layered open framework material, K2[(VOHPO4)2(C2O4)], composited with reduced graphene oxide (rGO) as a 4 V positive electrode material for KIBs. The material is prepared by a simple precipitation reaction at room temperature. The material demonstrates reversible K‐extraction/insertion with conventional carbonate ester KPF6 solutions; however, with low specific capacity and low Coulombic efficiency. A high discharge capacity of >100 mAh g?1 with good cycling stability and higher Coulombic efficiency is achieved in a highly concentrated electrolyte, 7 mol kg?1 of potassium bis(fluorosulfonyl)amide (KFSA) in dimethoxyethane (DME) at 0.1 C rate. Due to the facile migration of K+ ions in the framework, the material exhibits excellent rate capability with a discharge capacity of 80 mAh g?1 at 10 C rate, and a good capacity retention of 67% after 500 cycles at 2 C rate.  相似文献   
156.
In view of the sluggish kinetics suppressing the oxygen evolution reaction (OER), developing efficient and robust OER catalysts is urgent and essential for developing efficient energy conversion technologies. Herein, hybrid amorphous/crystalline FeCoNi layered double hydroxide (LDH)-supported single Ru atoms (Ru SAs/AC-FeCoNi) are developed for enabling a highly efficient electrocatalytic OER. The amorphous outer layer in Ru SAs/AC-FeCoNi is composed of abundant defect sites and unsaturated coordination sites, which can serve as anchoring sites to stabilize single Ru atoms. The crystalline inner has a highly symmetric rigid structure, thereby strengthening the stability of support for a long-lasting OER. The synergistic effects endow this hybrid catalyst with extremely low overpotential (205 mV at 10 mA cm−2). Density functional theory calculation indicates that single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi LDH facilitate the formation of Ru–O* (rate-determining step), thus accelerating the OER process.  相似文献   
157.
The photophysical properties of 1,1′-dimethyl-4,4′dipyridinium (methyl viologen, MV2+) intercalated within zirconium phosphate (ZrP) were investigated. The intercalation of MV2+ within ZrP was achieved by ion-exchange using a hydrated form of ZrP with six water molecules per formula unit and an interlayer distance of 10.3 Å. The intercalation yields a new phase with an interlayer distance up to 10.6 Å. The MV2+-exchanged ZrP material was characterized using elemental analysis, XRPD and IR data. The MV2+-exchanged ZrP materials show a red shift in the UV-Vis spectra in contrast with solution. The photoexcitation of nitrogen purged, MV2+-exchanged ZrP water suspensions with UV light leads to fluorescence emission with a maximum at 337 nm. The photoexcitation of MV2+-exchanged ZrP suspensions without nitrogen purging yields two fluorescence emissions with maxima at 337 and 450 nm. The emission in the visible region can be attributed to a photodecomposition product. The fluorescence quantum yields indicate that the emission of MV2+-exchanged ZrP is of the same order of magnitude as that of MV2+ in water indicating a strong deactivation of the excited state by non-radiative pathways.  相似文献   
158.
Achieving the targeted control of layered oxide properties calls for more fundamental studies to mechanistically probe their evolution during their synthesis. Herein, dopant distribution, phase propagation, and local chemical changes as well as their interplay in multielement-doped LiNiO2 materials are investigated using spectroscopic, imaging, and scattering techniques. It is shown that dopants undergo dynamic redistribution in the Ni(OH)2 host lattice at the early stage of calcination (below 300 °C). Such redistribution behavior exhibits strong dopant-dependent characteristics, allowing for targeted surface and bulk doping control. The Ni oxidation process exhibits depth-dependent characteristics and the most rapid Ni oxidation takes place between 300 and 700 °C. Using Ni oxidation state as the proxy for the phase transformation, the buildup of heterogenous phase propagation in the early stage of calcination is shown, especially along the radial direction of secondary particles. The radial heterogenous phase distribution gradually decreases upon completing the calcination. However, a high degree of mosaic-like heterogeneity may still be present in the final product, departing from the perfect layered oxide. The present study offers fundamental insights into manipulating multiscale materials properties during calcination for obtaining stable, high-energy layered oxide cathodes.  相似文献   
159.
纳米材料被视为重要的RNA干扰增效物质。层状双氢氧化物(LDH)是具有生物相容性的可降解纳米材料,可以显著提高dsRNA防控黄瓜花叶病毒的效果。为明确LDH能否提高昆虫RNA干扰的效果,以期促进RNA生物农药在农业害虫防治中的应用和推广,本研究选择茄二十八星瓢虫Henosepilachna vigintioctopunctata的EcR基因进行RNA干扰介导的致死效应研究。将LDH与dsEcR组装形成复合物LDH-dsEcR,利用琼脂糖凝胶电泳确定LDH-dsEcR的最佳装载比例。通过静置法检测LDH-dsEcR的稳定性,借助透射电子显微镜验证其组装状态。采用浸叶法测定LDH-dsEcR的增效性,使用体视镜观察其对试虫形态的影响。结果表明:LDH与dsEcR可形成稳定的复合物,其最佳装载比为16∶1。LDH对茄二十八星瓢虫无毒性,但经LDH与dsEcR处理,部分试虫虫体呈黑褐色,或无法蜕皮化蛹,或维持在预蛹状态。遗憾的是LDH-dsEcR复合物的增效作用不明显,推测昆虫肠道的酸碱度可能是影响LDH-dsRNA增效的因素之一。本研究首次为利用LDH研究昆虫RNA生物农药提供了可观的理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号